VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (CBCS) IV-Semester Main Examinations, May-2018

Linear Algebra and its Applications

(Open Elective-III)
Time: $\mathbf{3}$ hours
Note: Answer ALL questions in Part-A and any FIVE from Part-B

$$
\text { Part }-A(10 \times 2=20 \mathrm{Marks})
$$

1. Determine whether the subset $\mathrm{S}=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \right\rvert\, x_{1} x_{2} x_{3}=0\right\}$ is a subspace of R^{3}.
2. Explain why the Set $S=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}2 & -3 \\ 1 & 2\end{array}\right]\right\}$ is not a basis for the vector space $\mathrm{V}=\mathrm{M}_{2 \times 2}$.
3. Find the coordinates of the vector $v=\left[\begin{array}{l}-2 \\ 1\end{array}\right]$ relative to the ordered basis $B=\left\{\left[\begin{array}{c}-2 \\ 4\end{array}\right],\left[\begin{array}{c}-1 \\ 2\end{array}\right]\right\}$.
4. Determine whether the function $T: R^{2} \rightarrow R^{2}, \mathrm{~T}=\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x+y \\ x-y+2\end{array}\right]$ is a linear transformation.
5. Find the basis for the null space of the linear transformation $T: R^{2} \rightarrow R^{2}$, defined by $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}-x+y \\ x-y\end{array}\right]$.
6. A linear operator $T: R^{2} \rightarrow R^{2}, T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}-x \\ y\end{array}\right]$, find the matrix representation for T relative to the standard basis for R^{n}.
7. Find a scalar c , so that $\left[\begin{array}{l}c \\ 3\end{array}\right]$ is orthogonal to $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$.
8. Prove that Pythagorean theorem to R^{n}.
9. Let $\mathrm{V}=\mathrm{R}^{2}$, with inner product defined by $\langle u, v\rangle=u_{1} v_{1}+3 u_{2} v_{2}$. Verify that the Cauchy-Schwartz Inequality is upheld.
10. Let $\mathrm{V}=\mathrm{P}_{2}$, with inner product defined by $\langle p, q\rangle=\int_{-1}^{1} p(x) q(x) d x$. Find the length of each vector in S. where $S=\left\{1, x, 1 / 2\left(3 x^{2}-1\right)\right\}$.

Part-B $(5 \times 10=50 \mathrm{Marks})$

11. a) Find the coordinates of the vector \mathbf{v} relative to the two ordered bases B_{1} and B_{2}

$$
\begin{align*}
& \mathrm{B}_{1}=\left\{\mathrm{x}^{2}-\mathrm{x}+1, \mathrm{x}^{2}+\mathrm{x}+1,2 \mathrm{x}^{2}\right\} \\
& \mathrm{B}_{2}=\left\{2 \mathrm{x}^{2}-\mathrm{x}+1,-\mathrm{x}^{2}+\mathrm{x}+2, \mathrm{x}+3\right\} \\
& \mathrm{v}=\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+3 \tag{5}
\end{align*}
$$

b) Find a basis for the $\operatorname{span}(S)$ as a subspace of R^{3} where

$$
S=\left\{\left[\begin{array}{c}
2 \\
-3 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
2
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{l}
4 \\
0 \\
4
\end{array}\right]\right\}
$$

12 a) Let $S=\left\{\left[\begin{array}{cc}2 & -3 \\ 0 & 0\end{array}\right],\left[\begin{array}{cc}1 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}-3 & 1 \\ 1 & 0\end{array}\right]\right\}$
i) Find span S.
ii) Is S linearly independent?
b) Explain sub-space of a vector space with an example.

13 a) A linear operator $T: P_{2} \rightarrow P_{2}$, define as

$$
\begin{align*}
& T(p(x))=p^{\prime}(x)+p(x) \tag{5}\\
& B=\left\{1-x-x^{2}, 1,1+x^{2}\right\} \\
& \left.B^{\prime}=-1+x,-1+x+x^{2}, x\right\} \\
& \mathbf{v}=1-x
\end{align*}
$$

i) Find the matrix representation for T relative to the standard basis for R^{n}.
ii) Find $T(v)$, using a direct computation and using the matrix representation.
b) Verify the dimensionality theorem for the linear operator $T: R^{3} \rightarrow R^{3}$ and $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ a basis for R^{3}. Suppose that

$$
T\left(v_{1}\right)=\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right] \quad T\left(v_{2}\right)=\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right] \quad T\left(v_{3}\right)=\left[\begin{array}{r}
-2 \\
2 \\
0
\end{array}\right]
$$

14 a) Let $T: R^{3} \rightarrow R^{3}$ be a linear transformation, and let \mathbf{B} be the standard basis for R^{3}.

$$
T\left(e_{1}\right)=\left[\begin{array}{l}
1 \tag{5}\\
1
\end{array}\right] \quad T\left(e_{2}\right)=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \quad T\left(e_{3}\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \text { Find } \quad T(\mathbf{v}), \text { where } \mathbf{v}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] .
$$

b) If $T: P_{2} \rightarrow P_{2}$ is a linear operator and
$\mathrm{T}(1)=1+\mathrm{x} ; \mathrm{T}(\mathrm{x})=2+\mathrm{x}^{2} ; \mathrm{T}\left(\mathrm{x}^{2}\right)=\mathrm{x}-3 \mathrm{x}^{2}$ then find $T\left(-3+\mathrm{x}-\mathrm{x}^{2}\right)$.
15. Let B be the basis for R^{3} given by $B=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$

Apply the Gram-Schmidt process to B to find an orthogonal basis for R^{3}.

