Hall Ticket Number:

Code No. : 14109 LAACode No. : 14109 LAAVASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD
B.E. (CBCS) IV-Semester Main Examinations, May-2018
Linear Algebra and its Applications
(Open Elective-III)Time: 3 hoursMax. Marks: 70Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A (10 × 2 = 20 Marks)1.Determine whether the subset $S = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} | x_1 x_2 x_3 = 0 \right\}$ is a subspace of \mathbb{R}^3 .2.Explain why the Set $S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 2 & -3 \\ 1 & 2 \end{bmatrix} \right\}$ is not a basis for the vector
space $V = M_{2x2}$.

- 3. Find the coordinates of the vector $v = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ relative to the ordered basis $B = \left\{ \begin{bmatrix} -2 \\ 4 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \end{bmatrix} \right\}.$
- 4. Determine whether the function $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} x+y \\ x-y+2 \end{bmatrix}$ is a linear transformation.
- 5. Find the basis for the null space of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, defined by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} -x + y \\ x y \end{bmatrix}.$
- 6. A linear operator $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} -x \\ y \end{bmatrix}$, find the matrix representation for T relative to the standard basis for \mathbb{R}^n .
- 7. Find a scalar c, so that $\begin{bmatrix} c \\ 3 \end{bmatrix}$ is orthogonal to $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$.
- 8. Prove that Pythagorean theorem to Rⁿ.
- 9. Let $V = R^2$, with inner product defined by $\langle u, v \rangle = u_1 v_1 + 3u_2 v_2$. Verify that the Cauchy-Schwartz Inequality is upheld.
- 10. Let $V = P_2$, with inner product defined by $\langle p, q \rangle = \int_{-1}^{1} p(x)q(x)dx$. Find the length of each vector in S. where $S = \{1, x, 1/2 (3x^2 1)\}$.

[5]

[5]

[5]

[5]

:: 2 ::

Part-B $(5 \times 10 = 50 \text{ Marks})$

11. a) Find the coordinates of the vector v relative to the two ordered bases B_1 and B_2 [5] $B_1 = \{x^2 - x + 1, x^2 + x + 1, 2x^2\}$ $B_2 = \{2x^2 - x + 1, -x^2 + x + 2, x + 3\}$ $v = p(x) = x^2 + x + 3$

b) Find a basis for the span(S) as a subspace of \mathbb{R}^3 where

$$S = \left\{ \begin{bmatrix} 2\\-3\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\2 \end{bmatrix}, \begin{bmatrix} 2\\-1\\2 \end{bmatrix}, \begin{bmatrix} 4\\0\\4 \end{bmatrix} \right\}$$

12 a) Let
$$S = \left\{ \begin{bmatrix} 2 & -3 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -3 & 1 \\ 1 & 0 \end{bmatrix} \right\}$$

- i) Find span S.
- ii) Is S linearly independent?

13 a) A linear operator $T: P_2 \to P_2$, define as T(p(x)) = p'(x) + p(x) $B = \{1 - x - x^2, 1, 1 + x^2\}$ $B' = -1 + x, -1 + x + x^2, x\}$ v = 1 - x

i) Find the matrix representation for T relative to the standard basis for Rⁿ.
ii) Find T(v), using a direct computation and using the matrix representation.

b) Verify the dimensionality theorem for the linear operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ and [5] B = {v₁, v₂, v₃} a basis for \mathbb{R}^3 . Suppose that

	-2		[0]		-2	
$T(v_1) =$	1	$T(v_2) =$	1	$T(v_3) =$	2	
	1	$T(v_2) =$	1		0	

14 a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation, and let **B** be the standard basis for \mathbb{R}^3 . [5]

$$T(e_1) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad T(e_2) = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \qquad T(e_3) = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \text{Find} \quad T(\mathbf{v}), \text{ where } \mathbf{v} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$

b) If
$$T: P_2 \rightarrow P_2$$
 is a linear operator and
 $T(1) = 1 + x$; $T(x) = 2 + x^2$; $T(x^2) = x - 3x^2$ then find $T(-3 + x - x^2)$.

15. Let B be the basis for R³ given by $B = \{v_1, v_2, v_3\} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$ [10]

Apply the Gram-Schmidt process to B to find an orthogonal basis for \mathbb{R}^3 .

[5]